Search results for "Hausdorff dimension"

showing 10 items of 50 documents

Space-filling vs. Luzin's condition (N)

2013

Let us assume that we are given two metric spaces, where the Hausdorff dimension of the first space is strictly smaller than the one of the second space. Suppose further that the first space has sigma-finite measure with respect to the Hausdorff measure of the corresponding dimension. We show for quite general metric spaces that for any measurable surjection from the first onto the second space, there is a set of measure zero that is mapped to a set of positive measure (both measures are the Hausdorff measures corresponding to the Hausdorff dimension of the first space). We also study more general situations where the measures on the two metric spaces are not necessarily the same and not ne…

28A75 (Primary) 54C10 26B35 28A12 28A20 (Secondary)General Mathematicsta111Hausdorff spaceMathematics::General TopologySpace (mathematics)Functional Analysis (math.FA)Mathematics - Functional AnalysisSurjective functionCombinatoricsSet (abstract data type)Metric spaceMathematics - Classical Analysis and ODEsHausdorff dimensionClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Visible parts of fractal percolation

2009

We study dimensional properties of visible parts of fractal percolation in the plane. Provided that the dimension of the fractal percolation is at least 1, we show that, conditioned on non-extinction, almost surely all visible parts from lines are 1-dimensional. Furthermore, almost all of them have positive and finite Hausdorff measure. We also verify analogous results for visible parts from points. These results are motivated by an open problem on the dimensions of visible parts.

28A80Plane (geometry)General MathematicsOpen problemProbability (math.PR)Mathematical analysisFractalDimension (vector space)Mathematics - Classical Analysis and ODEsPercolationHausdorff dimensionClassical Analysis and ODEs (math.CA)FOS: MathematicsHausdorff measureAlmost surelyMathematics - ProbabilityMathematics
researchProduct

FRACTIONAL-ORDER GENERALIZATION OF TRANSPORT EQUATIONS IN FRACTAL POROUS MEDIA

2014

Anomalous diffusionHausdorff dimensionFractional derivativeTransport equations.
researchProduct

Norm or numerical radius attaining polynomials on C(K)

2004

Abstract Let C(K, C ) be the Banach space of all complex-valued continuous functions on a compact Hausdorff space K. We study when the following statement holds: every norm attaining n-homogeneous complex polynomial on C(K, C ) attains its norm at extreme points. We prove that this property is true whenever K is a compact Hausdorff space of dimension less than or equal to one. In the case of a compact metric space a characterization is obtained. As a consequence we show that, for a scattered compact Hausdorff space K, every continuous n-homogeneous complex polynomial on C(K, C ) can be approximated by norm attaining ones at extreme points and also that the set of all extreme points of the u…

Applied MathematicsMathematical analysisBanach spaceHausdorff spaceContinuous functions on a compact Hausdorff spaceCombinatoricsMetric spacesymbols.namesakeUniform normNorm (mathematics)Hausdorff dimensionsymbolsStone–Weierstrass theoremAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Visible parts and dimensions

2003

We study the visible parts of subsets of n-dimensional Euclidean space: a point a of a compact set A is visible from an affine subspace K of n, if the line segment joining PK(a) to a only intersects A at a (here PK denotes projection onto K). The set of all such points visible from a given subspace K is called the visible part of A from K. We prove that if the Hausdorff dimension of a compact set is at most n−1, then the Hausdorff dimension of a visible part is almost surely equal to the Hausdorff dimension of the set. On the other hand, provided that the set has Hausdorff dimension larger than n−1, we have the almost sure lower bound n−1 for the Hausdorff dimensions of visible parts. We al…

Applied MathematicsMathematical analysisMinkowski–Bouligand dimensionMathematics::General TopologyGeneral Physics and AstronomyDimension functionStatistical and Nonlinear PhysicsUrysohn and completely Hausdorff spacesEffective dimensionCombinatoricsPacking dimensionHausdorff distanceHausdorff dimensionMathematics::Metric GeometryHausdorff measureMathematical PhysicsMathematicsNonlinearity
researchProduct

One-dimensional families of projections

2008

Let m and n be integers with 0 < m < n. We consider the question of how much the Hausdorff dimension of a measure may decrease under typical orthogonal projections from onto m-planes provided that the dimension of the parameter space is one. We verify the best possible lower bound for the dimension drop and illustrate the sharpness of our results by examples. The question stems naturally from the study of measures which are invariant under the geodesic flow.

Applied MathematicsMinkowski–Bouligand dimensionGeneral Physics and AstronomyDimension functionStatistical and Nonlinear PhysicsGeometryParameter spaceEffective dimensionUpper and lower boundsCombinatoricsPacking dimensionHausdorff dimensionInvariant (mathematics)Mathematical PhysicsMathematicsNonlinearity
researchProduct

Uniqueness of diffusion on domains with rough boundaries

2016

Let $\Omega$ be a domain in $\mathbf R^d$ and $h(\varphi)=\sum^d_{k,l=1}(\partial_k\varphi, c_{kl}\partial_l\varphi)$ a quadratic form on $L_2(\Omega)$ with domain $C_c^\infty(\Omega)$ where the $c_{kl}$ are real symmetric $L_\infty(\Omega)$-functions with $C(x)=(c_{kl}(x))>0$ for almost all $x\in \Omega$. Further assume there are $a, \delta>0$ such that $a^{-1}d_\Gamma^{\delta}\,I\le C\le a\,d_\Gamma^{\delta}\,I$ for $d_\Gamma\le 1$ where $d_\Gamma$ is the Euclidean distance to the boundary $\Gamma$ of $\Omega$. We assume that $\Gamma$ is Ahlfors $s$-regular and if $s$, the Hausdorff dimension of $\Gamma$, is larger or equal to $d-1$ we also assume a mild uniformity property for $\Omega$ i…

Boundary (topology)01 natural sciencesAhlfors regularityCombinatoricsMarkov uniquenessMathematics - Analysis of PDEsHardy inequalityFOS: MathematicsUniqueness0101 mathematicsMathematicsDiscrete mathematicsDirichlet formApplied Mathematicsta111010102 general mathematicsNeighbourhood (graph theory)Lipschitz continuity47D07 35J70 35K65010101 applied mathematicsQuadratic formHausdorff dimensionDomain (ring theory)AnalysisAnalysis of PDEs (math.AP)
researchProduct

Hausdorff dimension from the minimal spanning tree

1993

A technique to estimate the Hausdorff dimension of strange attractors, based on the minimal spanning tree of the point distribution is extensively tested in this work. This method takes into account in some sense the infimum requirement appearing in the definition of the Hausdorff dimension. It provides accurate estimates even for a low number of data points and it is especially suited to high-dimensional systems.

CombinatoricsDiscrete mathematicsHausdorff distancePacking dimensionHausdorff dimensionMathematicsofComputing_NUMERICALANALYSISMinkowski–Bouligand dimensionDimension functionHausdorff measureUrysohn and completely Hausdorff spacesEffective dimensionMathematicsPhysical Review E
researchProduct

Packing dimension, intersection measures, and isometries

1997

CombinatoricsDiscrete mathematicsPacking dimensionIntersectionGeneral MathematicsHausdorff dimensionDimension functionEffective dimensionMathematicsMathematical Proceedings of the Cambridge Philosophical Society
researchProduct

Mappings of finite distortion: discreteness and openness for quasi-light mappings

2005

Abstract Let f ∈ W 1 , n ( Ω , R n ) be a continuous mapping so that the components of the preimage of each y ∈ R n are compact. We show that f is open and discrete if | D f ( x ) | n ⩽ K ( x ) J f ( x ) a.e. where K ( x ) ⩾ 1 and K n − 1 / Φ ( log ( e + K ) ) ∈ L 1 ( Ω ) for a function Φ that satisfies ∫ 1 ∞ 1 / Φ ( t ) d t = ∞ and some technical conditions. This divergence condition on Φ is shown to be sharp.

CombinatoricsDistortion (mathematics)Open mappingApplied MathematicsHausdorff dimensionMathematical analysisFunction (mathematics)Mathematical PhysicsAnalysisMathematicsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire
researchProduct